Preliminary study on a novel biological scaffold loaded with Apelin-13 sustained-release microcapsules for promoting fallopian tube recanalization in rabbits.

Qun Zhao,Min Xue, Yuyan Li, Yifan Zheng, Zhewei Xu,Zhiyue Li

Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences(2023)

Cited 0|Views5
No score
Abstract
OBJECTIVES:Tubal factor infertility severely impairs the natural fertility of women, and there is for genuine tubal recanalization, including restoration of both the anatomy and function of the diseased fallopian tubes. Currently, there is no effective treatment available. This study aims to explore methods for promoting the repair and recanalization of fallopian tubes from these 2 aspects. METHODS:Apelin-13 sustained-release microspheres and poly (lactic-co-glycolic acid) (PLGA) three-dimensional (3D) biodegradable scaffolds were prepared. The basic characteristics and in vivo degradation (mass loss rate) of the biodegradable scaffolds were tested, along with the in vitro drug release (cumulative release rate), the in vivo drug release (Apelin-13 plasma concentration), and in vitro degradation (degradation rate) of the microspheres. The Apelin-13 microspheres (microsphere group)/PLGA 3D scaffolds loaded with Apelin-13 sustained-release microspheres (scaffold-microcapsule group) were injected/placed into the fallopian tubes of New Zealand rabbit of chronic salpingitis models. The patency, microscopic structure, and positive expression of estrogen receptor and progesterone receptor of the fallopian tubes in the control group, the model group, the microcapsule group, and the scaffold-microcapsule group was observed and compared. RESULTS:At the 4th week post-operation, the mass loss rate of the PLGA 3D scaffolds, the degradation rate of the microspheres, and the Apelin-13 sustained-release microspheres-generated cumulative release rate in vitro over 30 days were 98.66%, 70.58%, and 98.68% respectively. The plasma concentration of Apelin-13 reached its peak within 5 days and remained stable for 25 days. Compared with the model and microsphere groups, the scaffold-microsphere group showed a milder inflammatory reaction within the tubal lumen, a higher rate of fallopian tube patency, and higher expression levels of estrogen and progesterone receptors (all P<0.05). The indicators of the scaffold-microsphere group were close to those of the control group. CONCLUSIONS:The PLGA 3D scaffolds loaded with Apelin-13 sustained-release microspheres can comprehensively repair the anatomical structure and physiological function of the fallopian tubes and hold promise for truly effective tubal recanalization.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined