UV-photoprocessing of acetic acid (CH3COOH)-bearing interstellar ice analogs

C. del Burgo Olivares,H. Carrascosa, B. Escribano,G. M. Muñoz Caro,R. Martín-Doménech

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
Acetic acid (CH3COOH) was detected in the gas toward interstellar clouds, hot cores, protostars and comets. Its formation in ice mantles was proposed and acetic acid awaits detection in the infrared spectra of the ice as most other COMs except methanol. The thermal annealing and UV-irradiation of acetic acid in the ice was simulated experimentally in this work under astrophysically relevant conditions. The experiments were performed under ultra-high vacuum conditions. An ice layer was formed by vapor deposition onto a cold substrate, and was warmed up or exposed to UV photons. The ice was monitored by infrared spectroscopy while the molecules desorbing to the gas phase were measured using a quadrupole mass spectrometer. The transformation of the CH3COOH monomers to cyclic dimers occurs at 120 K and the crystal form composed of chain polymers was observed above 160 K during warm-up of the ice. Ice sublimation proceeds at 189 K in our experiments. Upon UV-irradiation simpler species and radicals are formed, which lead to a residue made of complex molecules after warm-up to room temperature. The possible formation of oxalic acid needs to be confirmed. The photodestruction of acetic acid molecules is reduced when mixed with water in the ice. This work may serve to search for the acetic acid photoproducts in lines of sight where this species is detected. A comparison of the reported laboratory infrared spectra with current JWST observations allows to detect or set upper imits on the CH3COOH abundances in interstellar and circumstellar ice mantles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要