Evaluating polarizable biomembrane simulations against experiments

Journal of Chemical Theory and Computation(2024)

引用 0|浏览6
暂无评分
摘要
Owing to the increase of available computational capabilities and the potential for providing more accurate description, polarizable molecular dynamics force fields are gaining popularity in modelling biomolecular systems. It is, however, crucial to evaluate how much precision is truly gained with the increased cost and complexity of the simulation. Here, we leverage the NMRlipids open collaboration and Databank to assess the performance of available polarizable lipid models—the CHARMM-Drude and the AMOEBA-based parameters—against high-fidelity experimental data and compare them to the top-performing non-polarizable models. While some improvement in the description of ion binding to membranes is observed in the most recent CHARMM-Drude parameters, and the conformational dynamics of AMOEBA-based parameters are excellent, the best non-polarizable models tend to outperform their polarizable counterparts for each property we explored. The identified shortcomings range from inaccuracies in describing the conformational space of lipids to excessively slow conformational dynamics. Our results provide valuable insights for further refinement of polarizable lipid force fields and for selecting the best simulation parameters for specific applications. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要