Combining deep reinforcement learning and multi-stage stochastic programming to address the supply chain inventory management problem

Francesco Stranieri, Edoardo Fadda,Fabio Stella

INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS(2024)

引用 0|浏览1
暂无评分
摘要
We introduce a novel heuristic designed to address the supply chain inventory management problem in the context of a two-echelon divergent supply chain. The proposed heuristic advances the current state-of-the -art by combining deep reinforcement learning with multi-stage stochastic programming. In particular, deep reinforcement learning is employed to determine the number of batches to produce, while multi-stage stochastic programming is applied to make shipping decisions. To support further research, we release a publicly available software environment that simulates a wide range of two-echelon divergent supply chain settings, allowing the manipulation of various parameter values, including those associated with seasonal demands. We then present a comprehensive set of numerical experiments considering constraints on production and warehouse capacities under fixed and variable logistic costs. The results demonstrate that the proposed heuristic significantly and consistently outperforms pure deep reinforcement learning algorithms in minimizing total costs. Moreover, it overcomes several inherent limitations of multi-stage stochastic programming models, thus underscoring its potential advantages in addressing complex supply chain scenarios.
更多
查看译文
关键词
Inventory management,Deep reinforcement learning,Stochastic programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要