Amino acid based ionic liquids for revitalization of sulfated lead anodes

JOURNAL OF POWER SOURCES(2024)

引用 0|浏览5
暂无评分
摘要
Lead acid batteries (LABs) are currently recycled using hazardous, polluting, and energy intensive procedures. Here we report a novel LAB recycling strategy with hydrophilic amino acid-based ionic liquids (ILs) to dissolve the water-insoluble PbSO4 crystals formed during deleterious hard sulfation at the anodes and then electrodeposit metallic Pb on a new surface. We identified two ILs, [Ch][Ser] and [Ch][Thr] ILs that show dramatic solubility towards PbSO4 at room temperature. [Ch][Ser] IL was successfully used in refurbishing hard sulfated anodes that had lost 99 % of their original capacity into a fresh Pb surface. More than 75 % of the capacity was renewed after a complete treatment on a half-cell. Electrodeposition of Pb from the Pb-[Ch][Ser] complex produced a uniform Pb microstructure. A remarkable 99 % of the IL-dissolved Pb2+ ions was electrodeposited. Furthermore, we solved the first crystal structure of the compound formed between Pb2+ and the amino acidbased IL. Based on 1H Nuclear Magnetic Resonance (NMR) spectrum of PbSO4 dissolved in the [Ch][Ser] IL and single crystal X-ray diffraction (XRD) studies, we discovered that the Pb2+ was coordinated with two [Ser] molecules and displayed a hemidirected five-coordinate geometry. ILs that can selectively dissolve PbSO4 thus hold promise for an environment-friendly alternative recycling paradigm for the LAB industry.
更多
查看译文
关键词
Lead acid battery,Ionic liquid,Hard sulfation,Recycling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要