Anti-cancer and neuroprotective effects of conjugated graphene quantum dot in brain tumor-bearing rat model

NANO EXPRESS(2023)

引用 0|浏览3
暂无评分
摘要
Glioblastoma has been recognized as a most complex and highly malignant type of primary brain tumor. The rapid progression brain tumor model was developed by direct intracranial administration of ENU at the different focal brain points in the rat brains. The GQD was synthesized by bottom-up technique and functionalized with Trastuzumab and Caspase-8 antibody by Carbodiimide-amidation activation. The in-vitro cytotoxicity MTT assay was performed with all the GQD conjugates in SK-N-SH and N2a cell lines. The acute and chronic toxicity of synthesized GQD was performed in healthy rats and evaluated the hemolytic activity and CRP levels. A synthesized quasi-spherical 2D tiny GQD has a particle size of less than 10 nm and a 12.7% quantum yield. DSL, TEM, AFM, FTIR, and fluorescence spectroscopy characterized the GQD conjugates. In-silico molecular docking was a conformed static interaction between GQD and antibodies. GQD-conjugates showed dose-dependent toxicity in both cell lines and mild acute toxicity in rat blood. The GBM tumor-bearing rats were assessed for the anticancer and neuroprotective activity of the GQD conjugates. Histopathology, immunohistochemistry, metabolic, and inflammatory tumor biomarker estimation showed that the GQD_Caspase-8 conjugate showed better anti-tumor and neuroprotective effects than other conjugates.
更多
查看译文
关键词
glioblastoma,graphene quantum dot,carbodiimide-amidation,anti-tumor activity,neuroprotection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要