Stability of plasma improved adhesive property of polytetrafluoroethylene surface

Surface Innovations(2023)

引用 0|浏览3
暂无评分
摘要
In this study, the authors investigated the wettability change of atmospheric-pressure-cold-plasma (APCP)-treated polytetrafluoroethylene (PTFE) surfaces with time under different storage temperatures and pressures, and the results indicate that low temperature can hinder wettability recovery. After storage for 5 days, the water contact angle (WCA) of PTFE stored at room temperature (25°C) recovered from 19 ± 2 to 54 ± 2°, while the WCA of PTFE stored at low temperature (−10°C) increased to just 42 ± 3°. Then, the mechanism contributing to the slower wettability recovery was investigated by analyzing surface chemical compositions through X-ray photoelectron spectroscopy and observing surface morphologies using atomic force microscopy. After 15-day storage, the oxygen (O) and nitrogen (N) contents decreased obviously, while the fluorine (F) content increased. The fluorine content of the sample stored at low temperature was 20% less than that of the sample stored at room temperature. In contrast, surface micromorphologies were unchanged during storage, and the surface roughness R a of each sample was around 7 nm. Finally, peel strength tests were conducted on APCP-treated PTFE surfaces stored at different temperatures, and the surfaces stored at low temperature maintained better adhesive properties. After 15 days of storage, the adhesive strength could still reach 400 N/m, which was 376% higher than that of the untreated surface. The research results are expected to facilitate practical applications of APCP modification and PTFE surfaces significantly.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要