谷歌Chrome浏览器插件
订阅小程序
在清言上使用

The Optimization of Secondary Lining Construction Time for Shield Tunnels Based on Longitudinal Mechanical Properties

Applied Sciences(2023)

引用 0|浏览6
暂无评分
摘要
In the field of shield tunnels, the occurrence of uneven longitudinal settlement in segment linings has presented persistent challenges, including heightened risks of localized damage and water leakage. While the adoption of a secondary lining has been proposed as a viable solution to these issues, the question of how to select an appropriate construction time for the secondary lining, one that enables it to fully harness its load-bearing capacity while optimizing the tunnel's overall stress and deformation characteristics, continues to be a pressing concern. To address this issue, this study established a three-dimensional longitudinal refined numerical model of double-layer-lined shield tunnel. In addition, the deformation degree of the segment lining was used as a time indicator to define the construction time for the secondary lining. Subsequently, an analysis of the impact of the construction time of the secondary lining on the longitudinal mechanical properties of the double-layer-lined shield tunnel is conducted through an assessment of tunnel longitudinal deformation and structural stress. The research findings indicated that the construction of the secondary lining improved the longitudinal deformation resistance of shield tunnels. Simultaneously, it led to a significant increase in the longitudinal shear forces within the segment lining and a notable reduction in longitudinal bending moments. Moreover, the construction time of the secondary lining played a pivotal role in these alterations. Considering the longitudinal force situations and load-bearing characteristics of the double-layer lining structure, it was determined that the optimal construction time for the secondary lining fell within the range of 20% to 40% of the total construction duration. In this scenario, the deformation and internal forces within the segment lining remained within permissible limits. Additionally, both the segment lining and the secondary lining were able to fully utilize their load-bearing capacities, ensuring the economic and safety aspects of the tunnel.
更多
查看译文
关键词
shield tunnel,double-layered lining,refined numerical model,secondary lining construction time,longitudinal mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要