Chrome Extension
WeChat Mini Program
Use on ChatGLM

Identification of angiogenesis-related genes in diabetic foot ulcer using machine learning algorithms

HELIYON(2023)

Cited 0|Views7
No score
Abstract
Background: Diabetic foot ulcers (DFUs) are among the most prevalent and dangerous complications of diabetes. Angiogenesis is pivotal for wound healing; however, its role in the chronic wound healing process in DFU requires further investigation. We aimed to investigate the pathogenic processes of angiogenesis in DFU from a molecular biology standpoint and to offer insightful information about DFU prevention and therapy.Methods: Differential gene and weighted gene co-expression network analyses (WGCNA) were employed to screen for genes related to DFU using the downloaded and collated GSES147890 datasets. With the goal of identifying hub genes, an interaction among proteins (PPI) network was constructed, and enrichment analysis was carried out. Utilizing a variety of machine learning techniques, including Boruta, Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), we were able to determine which hub genes most strongly correspond to DFU. This allowed us to create an ideally suited DFU forecasting model that was validated via an external dataset. Finally, by merging 36 angiogenesis-related genes (ARGs) , machine learning models, we identified the genes involved in DFU-related angiogenesis.Results: By merging 260 genes located in the green module and 59 differentially expressed genes (DEGs), 35 candidate genes highly associated with DFU were found for more investigation. 35 candidate genes were enriched in epidermal growth factor receptor binding, nuclear division regulation, fluid shear stress, atherosclerosis , negative regulation of chromosomal structure for the enrichment study. Fifteen hub genes were found with the aid of the CytoHubba plug. The LASSO method scored better in terms of prediction performance (GSE134341) (LASSO:0.89, SVM:0.65, Boruta:0.66) based on the validation of the external datasets. We identified throm-bomodulin (THBD) as a key target gene that potentially regulates angiogenesis during DFU development. Based on the external validation dataset (GSE80178 and GSE29221), receiver operating characteristic (ROC) curves with higher efficiency were generated to confirm the po-tential of THBD as a biomarker of angiogenesis in DFU. Furthermore supporting this finding were the results of Western blot and real-time quantitative polymerase chain reaction (RT-qPCR), which showed decreased THBD expression in human umbilical vein endothelial cells (HUVECs) cultivated under high glucose. Conclusions: The findings implicate that THBD may influence DFU progression as a potential target for regulating angiogenesis, providing a valuable direction for future studies.
More
Translated text
Key words
DFU,Angiogenesis,DEGs,WGCNA,Machine learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined