Immune and oxidative stress disorder in ovulation-dysfunction women revealed by single-cell transcriptome

FRONTIERS IN IMMUNOLOGY(2023)

Cited 0|Views7
No score
Abstract
IntroductionOvulation dysfunction is now a widespread cause of infertility around the world. Although the impact of immune cells in human reproduction has been widely investigated, systematic understanding of the changes of the immune atlas under female ovulation remain less understood.MethodsHere, we generated single cell transcriptomic profiles of 80,689 PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause (MENO), and identified totally 7 major cell types and 25 subsets of cells.ResultsOur study revealed distinct cluster distributions of immune cells among individuals of ovulation disorders and health. In patients with ovulation dysfunction, we observed a significant reduction in populations of naive CD8 T cells and effector memory CD4 T cells, whereas circulating NK cells and regulatory NK cells increased.DiscussionOur results highlight the significant contribution of cDC-mediated signaling pathways to the overall inflammatory response within ovulation disorders. Furthermore, our data demonstrated a significant upregulation of oxidative stress in patients with ovulation disorder. Overall, our study gave a deeper insight into the mechanism of PCOS, POI, and menopause, which may contribute to the better diagnosis and treatments of these ovulatory disorder.
More
Translated text
Key words
single-cell RNA sequencing,ovulation dysfunction,immune cell disorder,conventional dendritic cell,oxidative stress
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined