Small-scale experimental study of microevolutionary processes and dynamics of CO2-N2 mixtures before BLEVE

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION(2024)

引用 0|浏览10
暂无评分
摘要
CCS technology involves carbon capture, where the captured CO2 contains N2 impurities and there is a risk of Boiling Liquid Expanding Vapor Explosion (BLEVE) in the high-pressure CO2-N2 mixtures vessel. Therefore, in this paper, we experimentally investigated the jet structure and boiling nucleation microevolution process after the sudden release of high-pressure CO2-N2 mixtures in a pressure vessel and discussed the effects of rupture disc diameter, and N2 molar ratio on the dynamic pressure before the startup of BLEVE. The results show that underexpanded jets are experimentally observed due to the Joule -Thompson effect. The boiling and nucleation microevolution is divided into six main stages, in the second of which the boiling expansion of the liquid and the "backfilling" of the gas leads to a dynamic pressure peak greater than the initial pressure, and BLEVE starts to occur. In the experiments, the dynamic pressure peaks were larger at 8 mm rupture disc diameter and 8 mol% N2, BLEVE did not occur at 15 mm, and N2 content below 5 mol% had less effect on the dynamic pressure behavior. This study provides a preliminary investigation of the pre-BLEVE behavior of CO2-N2 mixtures and provides theoretical support for risk prevention.
更多
查看译文
关键词
CO2-N2 mixtures,Boiling and nucleation processes,Boiling liquid expanding vapor explosion,(BLEVE),Rupture disc diameter,N2 molar ratio
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要