Evaluation of the Dynamic Stability of Underground Structures Assuming a Hydrogen Gas Explosion Disaster in a Shallow Underground Hydrogen Storage Facility

APPLIED SCIENCES-BASEL(2023)

引用 0|浏览3
暂无评分
摘要
Amid the ongoing global warming crisis, there has been growing interest in hydrogen energy as an environmentally friendly energy source to achieve carbon neutrality. A stable and large-scale hydrogen storage infrastructure is essential to satisfy the increasing demand for hydrogen energy. Particularly for hydrogen refueling stations located in urban areas, technological solutions are required to ensure the stability of adjacent civil structures in the event of hydrogen storage tank explosions. In this study, a numerical analysis using equivalent trinitrotoluene (TNT) and Concrete Damage Plasticity (CDP) models was employed to analyze the dynamic behavior of the ground in response to hydrogen gas explosions in shallow underground hydrogen storage facilities and to assess the stability of nearby structures against explosion effects. According to the simulation results, it was possible to ensure the structural stability of nearby buildings and tunnel structures by maintaining a minimum separation distance. In the case of nearby building structures, a distance of at least 6 to 7 m is needed to be maintained from the underground hydrogen storage facility to prevent explosion damage from a hydrogen gas explosion. For nearby tunnel structures, a distance of at least 10 m is required to ensure structural stability.
更多
查看译文
关键词
underground hydrogen storage,equivalent TNT,Concrete Damage Plasticity,minimum safety distance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要