Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

Nature Astronomy(2023)

Cited 0|Views19
No score
Abstract
Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized. Iron nitride (Fe4N) is detected on magnetite particles within the Ryugu sample returned by Hayabusa2. It is probably the product of impacts of nitrogen-rich dust from the outer Solar System on the surface of Ryugu, indicative of a flux of N-rich dust in the inner Solar System.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined