Complexity-theoretic foundations of BosonSampling with a linear number of modes

Adam Bouland,Daniel Brod, Ishaun Datta,Bill Fefferman, Daniel Grier, Felipe Hernandez, Michal Oszmaniec

CoRR(2023)

引用 0|浏览5
暂无评分
摘要
BosonSampling is the leading candidate for demonstrating quantum computational advantage in photonic systems. While we have recently seen many impressive experimental demonstrations, there is still a formidable distance between the complexity-theoretic hardness arguments and current experiments. One of the largest gaps involves the ratio of photons to modes: all current hardness evidence assumes a "high-mode" regime in which the number of linear optical modes scales at least quadratically in the number of photons. By contrast, current experiments operate in a "low-mode" regime with a linear number of modes. In this paper we bridge this gap, bringing the hardness evidence for the low-mode experiments to the same level as had been previously established for the high-mode regime. This involves proving a new worst-to-average-case reduction for computing the Permanent that is robust to large numbers of row repetitions and also to distributions over matrices with correlated entries.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要