Effects of domain walls and chiral supercurrent in quantum anomalous Hall Josephson junctions

arxiv(2023)

Cited 0|Views8
No score
Abstract
The intriguing interplay between topology and superconductivity has attracted significant attention, given its potential for realizing topological superconductivity. In this study, we investigate the transport properties of the chiral Josephson effect in the quantum anomalous Hall insulators (QAHIs)-based junction. We reveal a systematic crossover from edge-state to bulk-state dominant supercurrents, with a notable $0-\pi$ transition observed under non-zero magnetic flux through chemical potential adjustments. This transition underscores the competition between bulk and chiral edge transport. Furthermore, we identify an evolution among three distinct quantum interference patterns: from a $2\Phi_0$-periodic oscillation pattern, to a $\Phi_0$-periodic oscillation pattern, and then to an asymmetric Fraunhofer pattern ($\Phi_0 = h/2e$ is the flux quantum, $h$ the Planck constant, and $e$ the electron charge). Subsequently, we examine the influence of domains on quantum interference patterns. Intriguingly, a distinctive Fraunhofer-like pattern emerges due to coexistence of chiral edge states and domain wall states, even when the chemical potential is within gap. These results not only advance the theoretical understanding but also pave the way for the experimental discovery of the chiral Josephson effect based on QAHI doped with magnetic impurities.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined