谷歌浏览器插件
订阅小程序
在清言上使用

Boosting Phosphoric Acid Retention in Polymer Electrolyte Membranes by Zwitterions: Insights from DFT Calculations and MD Simulations

JOURNAL OF PHYSICAL CHEMISTRY B(2023)

引用 0|浏览6
暂无评分
摘要
Effective retention of phosphoric acid (PA) is crucial for the efficient operation of fuel cells based on PA-doped polymeric membranes, which is highly challenging due to the moisture-induced loss of PA. Therefore, a comprehensive understanding of the interplay among PA, functional groups, and water is essential for designing membrane materials. Using density functional theory (DFT) calculations and molecular dynamics (MD) simulations, we unveil the remarkable capability of zwitterions to effectively sequester PA, thereby unlocking the potential for fuel cell optimization. Our DFT calculations show that zwitterions, termed "charged proton-accepting bases", exhibit stronger interactions with PA compared to the traditional neutral proton-accepting bases. Furthermore, the presence of water amplifies such a discrepancy, with the zwitterion-PA interactions playing a dominant role in the zwitterion-PA-water cluster due to the strongest affinity of zwitterions to PA. Conversely, the ability of neutral bases to retain PA is significantly attenuated by moisture as the interactions between water and PA surpass those between neutral bases and PA. The strong zwitterion-PA associations arise primarily from the formation of multiple hydrogen bonds. Furthermore, MD simulations reveal the uniform distribution of zwitterions in aqueous environments and their pronounced affinities for both PA and water. In contrast, neutral bases tend to aggregate, interacting limitedly with PA. These findings underscore the effectiveness of zwitterions in boosting PA retention in fuel cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要