Chrome Extension
WeChat Mini Program
Use on ChatGLM

Sensing the invisible: Ultra-low-level electrochemical detection of the microbe (Pseudomonas aeruginosa) on cobalt ferrite-doped silver nanocomposite (CoFe2O4/AgNPs) surfaces

Food chemistry(2024)

Cited 0|Views1
No score
Abstract
This study introduces an efficient electrochemical method for rapidly identifying the pathogen Pseudomonas aeruginosa (P. aeruginosa), which poses threats to individuals with compromised immune systems and cystic fibrosis. Unlike conventional techniques such as polymerase chain reaction, which fails to detect modifications in the resistant properties of microbes due to environmental stress, our proposed electrochemical approach offers a promising alternative. The characterisation analyses, involving microscopic and spectroscopic methods, reveal that the nanocomposite exhibits a crystalline structure, specific atomic vibrational patterns, a cubic surface shape, and distinct elemental compositions. This sensor demonstrates exceptional detection capabilities for P. aeruginosa, with a linear range of 1-23 CFU mL-1 and a low detection limit of 4.0 x 10-3 CFU mL-1. This research not only explores novel electrochemical techniques and the CoFe2O4/AgNPs nanocomposite but also their practical implications in food science, highlighting their relevance across various food samples, water, and soil.
More
Translated text
Key words
Pseudomonas aeruginosa,Antibiotic resistance,Post-surgical infections,Electrochemical detection,Cobalt ferrite doped silver
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined