Short-term evolution of antibiotic responses in highly dynamic environments favors loss of regulation.

John Crow, Hao Geng,Daniel Schultz

bioRxiv : the preprint server for biology(2023)

引用 0|浏览1
暂无评分
摘要
Microbes inhabit natural environments that are remarkably dynamic, with sudden environmental shifts that require immediate action by the cell. To cope with changing environments, microbes are equipped with regulated response mechanisms that are only activated when needed. However, when exposed to extreme environments such as clinical antibiotic treatments, complete loss of regulation is frequently observed. Although recent studies suggest that the initial evolution of microbes in new environments tends to favor mutations in regulatory pathways, it is not clear how this evolution is affected by how quickly conditions change (i.e. dynamics), or which mechanisms are commonly used to implement new regulation. Here, we perform experimental evolution on continuous cultures of E. coli carrying the tetracycline resistance tet operon to identify specific types of mutations that adapt drug responses to different dynamical regimens of drug administration. When cultures are evolved under gradually increasing tetracycline concentrations, we observe no mutations in the tet operon, but a predominance of fine-tuning mutations increasing the affinity of alternative efflux pump AcrB to tetracycline. When cultures are instead periodically exposed to large drug doses, all populations developed transposon insertions in repressor TetR, resulting in loss of regulation of efflux pump TetA. We use a mathematical model of the dynamics of antibiotic responses to show that sudden exposure to large drug concentrations can overwhelm regulated responses, which cannot induce resistance fast enough, resulting in fitness advantage for constitutive expression of resistance. These results help explain the loss of regulation of antibiotic resistance by opportunistic pathogens evolving in clinical environments. Our experiment supports the notion that initial evolution in new ecological niches proceeds largely through regulatory mutations and suggests that transposon insertions are a main mechanism driving this process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要