Discovery of regulatory motifs in 5' untranslated regions using interpretable multi-task learning models.

Cell systems(2023)

引用 0|浏览6
暂无评分
摘要
The sequence in the 5' untranslated regions (UTRs) is known to affect mRNA translation rates. However, the underlying regulatory grammar remains elusive. Here, we propose MTtrans, a multi-task translation rate predictor capable of learning common sequence patterns from datasets across various experimental techniques. The core premise is that common motifs are more likely to be genuinely involved in translation control. MTtrans outperforms existing methods in both accuracy and the ability to capture transferable motifs across species, highlighting its strength in identifying evolutionarily conserved sequence motifs. Our independent fluorescence-activated cell sorting coupled with deep sequencing (FACS-seq) experiment validates the impact of most motifs identified by MTtrans. Additionally, we introduce "GRU-rewiring," a technique to interpret the hidden states of the recurrent units. Gated recurrent unit (GRU)-rewiring allows us to identify regulatory element-enriched positions and examine the local effects of 5' UTR mutations. MTtrans is a powerful tool for deciphering the translation regulatory motifs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要