Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking

Translational psychiatry(2023)

引用 0|浏览9
暂无评分
摘要
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (K(Ca)2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of K(Ca)2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative K(Ca)2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, K(Ca)2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要