Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters

Nano letters(2023)

Cited 0|Views7
No score
Abstract
Understanding and guiding light at the nanoscale can significantly impact society, for instance, by facilitating the development of efficient, sustainable, and/or cost-effective technologies. One emergent branch of nanotechnology exploits the conversion of light into heat, where heat is subsequently harnessed for various applications including therapeutics, heat-driven chemistries, and solar heating. Gold nanoparticles are overwhelmingly the most common material for plasmon-assisted photothermal applications; yet magnesium nanoparticles present a compelling alternative due to their low cost and superior biocompatibility. Herein, we measured the heat generated and quantified the photothermal efficiency of the gold and magnesium nanoparticle suspensions. Photothermal transduction experiments and optical and thermal simulations of different sizes and shapes of gold and magnesium nanoparticles showed that magnesium is more efficient at converting light into heat compared to gold at near-infrared wavelengths, thus demonstrating that magnesium nanoparticles are a promising new class of inexpensive, biodegradable photothermal platforms.
More
Translated text
Key words
magnesium,plasmonics,photothermal therapy,photothermaltransduction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined