Computational study of the photophysical properties and electronic structure of iridium(iii) photosensitizer complexes with electron-withdrawing groups

Yunlong Shang, Zhoujie Zhang, Mengping Huang,Na Shu, Hanyu Luo, Qiyan Cao, Bingbing Fan, Yu Han,Min Fang,Yong Wu,Jiawei Xu

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2023)

引用 0|浏览10
暂无评分
摘要
A series of novel [Ir(tpy)(btp)Cl](+) complexes (Ir1-Ir4) have been reported to show excellent performance as photosensitizers. The introduction of electron-withdrawing groups increases visible light absorption and the lifetime of triplet states. To improve the photophysical properties, we theoretically design Ir5-Ir9 with electron-withdrawing groups (Cl, F, COOH, CN and NO2). Surprisingly, our findings indicate that the photosensitizer performance does not strictly increase with the electron-withdrawing ability of the substituents. In this work, the geometric and electronic structures, transition features, and photophysical properties of Ir1-Ir9 are investigated. The natural transition orbital (NTO) analysis indicates that the T-1 and T-2 states play a role in the photochemical pathways. Ultraviolet-visible (UV-vis) absorption spectra and charge-transfer spectra (CTS) have been investigated to show that the introduction of electron-withdrawing groups not only improves the visible light absorbing ability, but also changes the nature of electron excitation, providing a future molecular design strategy for similar series of photosensitizers. The rates of (reverse) intersystem crossing and the Huang-Rhys factors are evaluated to interpret the experimental results within the framework of Marcus theory. For complexes Ir1-Ir7, the introduction of electron-withdrawing groups leads to a lower efficiency of reverse intersystem crossing and a strong non-radiative process T-2 -> T-1, resulting in a long triplet lifetime and excellent performance as a photosensitizer. Furthermore, some newly designed complexes (Ir7-Ir9) show great potential as thermally activated delayed fluorescence emitters, contrary to our initial expectations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要