Visual to default network pathways: A double dissociation between semantic and spatial cognition

biorxiv(2023)

Cited 0|Views25
No score
Abstract
Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually-mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories. Later, they made semantic and spatial context decisions about these objects and buildings during functional magnetic resonance imaging. A lateral ventral occipital to frontotemporal DMN pathway was primarily engaged by semantic judgements, while a medial visual to medial temporal DMN pathway supported spatial context judgements. These pathways had distinctive locations in functional connectivity space: the semantic pathway was both further from unimodal systems and more balanced between visual and auditory-motor regions compared with the spatial pathway. When semantic and spatial context information could be integrated (in buildings containing objects from a single category), regions at the intersection of these pathways responded, suggesting that parallel processing streams interact at multiple levels of the cortical hierarchy to produce coherent memory-guided cognition. ### Competing Interest Statement The authors have declared no competing interest. The scripts used in the presentation of the task, the analysis of the neuroimaging data and the visualisation of the results reported here can be consulted in the OSF collection associated with this paper (). We do not have sufficient consent for the public release of individual-level data; researchers wanting access to these data should contact the Research Ethics Committee of the York Neuroimaging Centre (rec-submission@ynic.york.ac.uk). Data will be released when this is possible under the terms of the UK and EU General Data Protection Regulations. Group-level brain maps used to produce the figures are available from the following Neurovault collection: .
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined