Riemannian Self-Attention Mechanism for SPD Networks

CoRR(2023)

Cited 0|Views6
No score
Abstract
Symmetric positive definite (SPD) matrix has been demonstrated to be an effective feature descriptor in many scientific areas, as it can encode spatiotemporal statistics of the data adequately on a curved Riemannian manifold, i.e., SPD manifold. Although there are many different ways to design network architectures for SPD matrix nonlinear learning, very few solutions explicitly mine the geometrical dependencies of features at different layers. Motivated by the great success of self-attention mechanism in capturing long-range relationships, an SPD manifold self-attention mechanism (SMSA) is proposed in this paper using some manifold-valued geometric operations, mainly the Riemannian metric, Riemannian mean, and Riemannian optimization. Then, an SMSA-based geometric learning module (SMSA-GLM) is designed for the sake of improving the discrimination of the generated deep structured representations. Extensive experimental results achieved on three benchmarking datasets show that our modification against the baseline network further alleviates the information degradation problem and leads to improved accuracy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined