High-quality single InGaAs/GaAs quantum dot growth on a CMOS-compatible silicon substrate for quantum photonic applications

Optica Quantum(2023)

引用 0|浏览5
暂无评分
摘要
We present the direct heteroepitaxial growth of high-quality InGaAs quantum dots on silicon, enabling scalable, cost-effective quantum photonics devices compatible with CMOS technology. GaAs heterostructures are grown on silicon via a GaP buffer and defect-reducing layers. These epitaxial quantum dots exhibit optical properties akin to those on traditional GaAs substrates, promising vast potential for the heteroepitaxy approach. They demonstrate strong multi-photon suppression with $g^{(2)}(\tau)=(3.7\pm 0.2) \times 10^{-2}$ and high photon indistinguishability $V=(66\pm 19)$% under non-resonance excitation. We achieve up to ($18\pm 1$)% photon extraction efficiency with a backside distributed Bragg mirror, marking a crucial step toward silicon-based quantum nanophotonics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要