Rotary Excitation of non-sinusoidal pulsed magnetic fields: Towards non-invasive direct detection of cardiac conduction

arxiv(2023)

引用 0|浏览7
暂无评分
摘要
Purpose: In the recent past, spin-locking MRI experiments were successfully applied for the direct detection of sinusoidal magnetic field oscillations in the sub-nT range. In the present study, this detection approach was extended to non-sinusoidal pulsed magnetic fields based on the Rotary Excitation (REX) mechanism. Methods: The new detection concept was examined by means of Bloch simulations, evaluating the interaction effect of spin-locked magnetization and low-frequency pulsed magnetic fields. The REX detection approach was validated under controlled conditions in phantom experiments at 3T. Gaussian and Sinc-shaped stimuli were investigated. In addition, the detection of artificial fields resembling a cardiac QRS complex, which is the most prominent peak visible on a Magnetocardiogram, was tested. Results: Bloch simulations demonstrated that the REX method has a high sensitivity to pulsed fields in the resonance case, which is met when the spin-lock frequency coincides with a non-zero Fourier component of the stimulus field. In the experiments, we found that magnetic stimuli of different durations and waveforms can be distinguished by their characteristic REX response spectrum. The detected REX amplitude was proportional to the stimulus peak amplitude (R2>0.98) and the lowest field detection was 1 nT. Furthermore, the detection of QRS-like fields with varying QRS durations yielded significant results in a phantom setup (p<0.001). Conclusion: REX detection can be transferred to non-sinusoidal pulsed magnetic fields and could provide a non-invasive, quantitative tool for spatially resolved assessment of cardiac biomagnetism. Potential applications include the direct detection and characterization of cardiac conduction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要