Lattice investigations of the chimera baryon spectrum in the Sp(4) gauge theory

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
We report the results of lattice numerical studies of the Sp(4) gauge theory coupled to fermions (hyperquarks) transforming in the fundamental and two-index antisymmetric representations of the gauge group. This strongly-coupled theory is the minimal candidate for the ultraviolet completion of composite Higgs models that facilitate the mechanism of partial compositeness for generating the top-quark mass. We measure the spectrum of the low-lying, half-integer spin, bound states composed of two fundamental and one antisymmetric hyperquarks, dubbed chimera baryons, in the quenched approximation. In this first systematic, non-perturbative study, we focus on the three lightest parity-even chimera-baryon states, in analogy with QCD, denoted as Λ_ CB, Σ_ CB (both with spin 1/2), and Σ_ CB^∗(with spin 3/2). The spin-1/2 such states are candidates of the top partners. The extrapolation of our results to the continuum and massless-hyperquark limit is performed using formulae inspired by QCD heavy-baryon Wilson chiral perturbation theory. Within the range of hyperquark masses in our simulations, we find that Σ_CB is not heavier than Λ_CB.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要