Layer-dependent superconductivity in iron-based superconductors

Ke Meng,Xu Zhang, Boqin Song,Baizhuo Li, Xiangming Kong, Sicheng Huang,Xiaofan Yang,Xiaobo Jin, Yiyuan Wu,Jiaying Nie,Guanghan Cao,Shiyan Li

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+{\delta} (Bi-2212), the Tc of the monolayer is almost identical to that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here we successfully fabricate ultrathin flakes of CsCa2Fe4As4F2, a highly anisotropic iron-based high-Tc superconductor, down to monolayer. The monolayer flake exhibits the highest Tc of 24 K (after tuning to the optimal doping by ionic liquid gating), which is about 20% lower than that of the bulk crystal. We also fabricate ultrathin flakes of CaKFe4As4, another iron-based superconductor with much smaller anisotropy. The Tc of the 3-layer flake decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors. From this, the Tc of a new monolayer superconductor can be extrapolated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要