Massive topological edge channels in three-dimensional topological materials induced by extreme surface anisotropy

arxiv(2023)

Cited 0|Views42
No score
Abstract
A two-dimensional quantum spin Hall insulator exhibits one-dimensional gapless spin-filtered edge channels allowing for dissipationless transport of charge and spin. However, the sophisticated fabrication requirement of two-dimensional materials and the low capacity of one-dimensional channels hinder the broadening applications. We introduce a method to manipulate a three-dimensional topological material to host a large number of one-dimensional topological edge channels utilizing surface anisotropy. Taking ZrTe5 as a model system, we realize a highly anisotropic surface due to the synergistic effect of the lattice geometry and Coulomb interaction, and achieve massive one-dimensional topological edge channels -- confirmed by electronic characterization using angle-resolved photoemission spectroscopy, in combination with first-principles calculations. Our work provides a new avenue to engineer the topological properties of three-dimensional materials through nanoscale tunning of surface morphology and opens up a promising prospect for the development of low-power-consumption electronic nano devices based on one-dimensional topological edge channels.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined