Safety and Feasibility of Functional Repetitive Neuromuscular Magnetic Stimulation of the Gluteal Muscles in Children and Adolescents with Bilateral Spastic Cerebral Palsy

CHILDREN-BASEL(2023)

引用 0|浏览6
暂无评分
摘要
Background: For children and adolescents affected by bilateral spastic cerebral palsy (BSCP), non-invasive neurostimulation with repetitive neuromuscular magnetic stimulation (rNMS) combined with physical exercises, conceptualized as functional rNMS (frNMS), represents a novel treatment approach. Methods: In this open-label study, six children and two adolescents (10.4 +/- 2.5 years) with BSCP received a frNMS intervention targeting the gluteal muscles (12 sessions within 3 weeks). Results: In 77.1% of the sessions, no side effects were reported. In 16.7%, 6.3% and 5.2% of the sessions, a tingling sensation, feelings of pressure/warmth/cold or very shortly lasting pain appeared, respectively. frNMS was highly accepted by families (100% adherence) and highly feasible (97.9% of treatment per training protocol). A total of 100% of participants would repeat frNMS, and 87.5% would recommend it. The Canadian Occupational Performance Measure demonstrated clinically important benefits for performance in 28% and satisfaction in 42% of mobility-related tasks evaluated by caregivers for at least one follow-up time point (6 days and 6 weeks post intervention). Two patients accomplished goal attainment for one mobility-related goal each. One patient experienced improvement for both predefined goals, and another participant experienced improvement in one and outreach of the other goal as assessed with the goal attainment scale. Conclusions: frNMS is a safe and well-accepted neuromodulatory approach that could improve the quality of life, especially in regard to activity and participation, of children and adolescents with BSCP. Larger-scaled studies are needed to further explore the effects of frNMS in this setting.
更多
查看译文
关键词
neurostimulation,repetitive peripheral magnetic stimulation,motor impairment,physical exercise,selective motor control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要