TiO2/Arabic Gum for Degradation of Pollutants in Water

Sustainability(2023)

Cited 0|Views9
No score
Abstract
Emerging contaminants and pollution are environmental problems threatening public health. Antibiotic ciprofloxacin and methylene blue dye are pollutants frequently detected in water systems worldwide. Photocatalysis is a process for water treatment. TiO2-based catalysts synthesized with natural gums show improved photocatalytic properties. Here, the sol-gel method synthesized TiO2/Arabic gum for photocatalytic performance. The innovation of this work was synthesized at 400 degrees C and investigated their photocatalytic proprieties using methylene blue and ciprofloxacin as model pollutants. XRD showed that the photocatalyst was in the anatase phase. The result showed that TiO2 with a band gap of 3.29 eV was achieved at a calcination temperature of 400 degrees C. Corresponding FTIR results suggest only the existence of functional groups related to TiO2. The SEM and BET method characterization indicated that TiO2/Arabic gum were spherical-shaped nanoparticles arranged in clusters with a mesoporous structure, contributing to photocatalytic performance. In addition, photocatalytic studies showed that the methylene blue dye and ciprofloxacin antibiotic degradation rates reached 99% and 94% under UV light, respectively. The hole (h+) and (OH)-O-center dot radicals are essential in photodegradation. The synthesized material showed excellent photostability and maintained almost the same degradation percentage in the three consecutive cycles tested on the different pollutants. The TiO2/Arabic gum is an excellent candidate for future use in treating contaminants in aqueous media using photocatalysis. Therefore, TiO2/Arabic gum nanoparticles are a promising material for wastewater treatment.
More
Translated text
Key words
dye,water treatment,oxide
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined