The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.)

TOXICS(2023)

引用 0|浏览16
暂无评分
摘要
Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil-plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil-plant system. Soil was spiked with 2.5-283 mg kg(-1) of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg(-1), respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg(-1), respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg(-1), respectively. Bioaccumulation coefficients ranged from 0.0030-0.95, and increased Ce < In < Nd congruent to Gd < La congruent to Be congruent to Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings.
更多
查看译文
关键词
bioaccumulation coefficient,perennial ryegrass,phytomanagement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要