Content of stress granules reveals a sex difference at the early phase of cold exposure in mice

American journal of physiology. Endocrinology and metabolism(2024)

引用 0|浏览0
暂无评分
摘要
Adaptive thermogenesis is a vital physiological process for small endotherms. Female animals usually are more sensitive to cold temperature due to anatomical differences. Whether there is a sex difference at a molecular level is unclear. Stress granules (SGs) are dynamic organelles in which untranslated mRNAs reside during cellular stress. We hypothesize that the prompt response of SGs to cold stress can reveal the molecular difference between sexes. By analyzing the content in SGs of brown adipose tissue (BAT) at the early phase of cold stress for both sexes, we found more diverse mRNAs docked in the SGs in male mice and these mRNAs representing an extensive cellular reprogramming including apoptosis process and cold-induced thermogenesis. In female mice, the mRNAs in SGs dominantly were comprised of genes regulating ribonucleoprotein complex biogenesis. Conversely, the proteome in SGs was commonly characterized as structure molecules and RNA processing for both sexes. A spectrum of eukaryotic initiation factors (eIFs) was detected in the SGs of both female and male BAT, while those remained unchanged upon cold stress in male mice, various eIF3 and eIF4G isoforms were found reduced in female mice. Taken together, the unique features in SGs of male BAT reflected a prompt uncoupling protein-1 (UCP1) induction which was absent in female, and female, by contrast, were prepared for long-term transcriptional and translational adaptations.
更多
查看译文
关键词
adaptive thermogenesis,sex dimorphism,stress granules
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要