Systemically Administered Anti-uPAR Antibody Plasma and Lung ELF Pharmacokinetics Characterized by Minimal Lung PBPK Model

AAPS PharmSciTech(2023)

引用 0|浏览1
暂无评分
摘要
Antibody-based therapeutics have recently gained keen attention for the treatment of pulmonary indications. However, systemically administered antibody exposure in the lungs needs to be better understood and remains a topic of interest. In this study, we evaluated the exposure of two different uPAR (urokinase-type plasminogen activator receptor) targeting full-length monoclonal IgGs in plasma and lung epithelial lining fluid (ELF) of mice after IP and IV administration. Antibody AK17 exhibited linear pharmacokinetics (PK) in plasma and ELF at 3 and 30 mg/kg single IV dose. The average plasma and ELF half-lives for AK17 and AK21 ranged between ~321–411 h and ~230–345 h, respectively, indicating sustained systemic and lung exposure of antibodies. The average ELF to the plasma concentration ratio of antibodies was ~0.01 and ~0.03 with IP and IV dosing, respectively, over 2 weeks post single dose. We simultaneously characterized plasma and ELF PK of antibody in mice by developing a minimal lung PBPK model for antibody. This model reasonably captured the plasma and ELF PK data while estimating three parameters. The model accounts for the convective transport of antibody into the tissues via blood and lymph flow. FcRn-mediated transcytosis was incorporated into the model for antibody distribution across the lung epithelial barrier. This model serves as a platform to predict the pulmonary PK of systemically administered antibodies and to support optimal dose selection for desired exposure in the lungs as the site of action.
更多
查看译文
关键词
antibody lung PK,antibody minimal lung PBPK model,anti-uPAR antibody,FcRn-mediated antibody transcytosis,lung epithelial lining fluid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要