3D Printing Technique Fortifies the Ultradeep Hydrodesulfurization Process of Diesel: A Journey of NiMo/Al2O3-MMT

Inorganic chemistry(2023)

引用 0|浏览0
暂无评分
摘要
In this contribution, we rationally designed and controllably fabricated a NiMo/Al2O3-montmorillonite (3D-NiMo/Al2O3-MMT) monolithic catalyst via a 3D printing strategy with economical montmorillonite (MMT) as a binder. The catalytic performance of the resulting NiMo/Al2O3-MMT for 4,6-dimethyldibenzothiophene (4,6-DMDBT) hydrodesulfurization (HDS) was evaluated. The experimental results unveil that the 3D-NiMo/Al2O3-MMT monolithic catalyst exhibits robust stability and exceptional HDS activity with 99.2% 4,6-DMDBT conversion (residual 4 ppm of S), which is remarkably superior to that of conventional NiMo/Al2O3 (61.5%), NiMo/MMT (63.2%), and even NiMo/Al2O3-MMT (76.5%) prepared by the mechanical-mixing method. This should be ascribed to the synthetic effect between the MMT binder and the Al2O3 substrate, which effectively weakens the interaction between the Mo species and the Lewis acids on the original Al2O3 surface, thereby significantly increasing the content of reducible Mo species and considerably facilitating the formation of more highly active NiMoS phase (Type II) with optimal average stacking layers and thereafter remarkably enhancing the ultradeep HDS activity of the 3D-NiMo/Al2O3-MMT monolithic catalyst.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要