An improved method to measure $\rm ^{12}C/^{13}C$ and $\rm ^{14}N/^{15}N$ abundance ratios: revisiting CN isotopologues in the Galactic outer disk

arxiv(2023)

引用 0|浏览21
暂无评分
摘要
The variations of elemental abundance and their ratios along the Galactocentric radius result from the chemical evolution of the Milky Way disks. The $\rm ^{12}C/^{13}C$ ratio in particular is often used as a proxy to determine other isotopic ratios, such as $\rm ^{16}O/^{18}O$ and $\rm ^{14}N/^{15}N$. Measurements of $\rm ^{12}CN$ and $\rm ^{13}CN$ (or $\rm C^{15}N$) -- with their optical depths corrected via their hyper-fine structure lines -- have traditionally been exploited to constrain the Galactocentric gradients of the CNO isotopic ratios. Such methods typically make several simplifying assumptions (e.g. a filling factor of unity, the Rayleigh-Jeans approximation, and the neglect of the cosmic microwave background) while adopting a single average gas phase. However, these simplifications introduce significant biases to the measured $\rm ^{12}C/^{13}C$ and $\rm ^{14}N/^{15}N$. We demonstrate that exploiting the optically thin satellite lines of $\rm ^{12}CN$ constitutes a more reliable new method to derive $\rm ^{12}C/^{13}C$ and $\rm ^{14}N/^{15}N$ from CN isotopologues. We apply this satellite-line method to new IRAM 30-m observations of $\rm ^{12}CN$, $\rm ^{13}CN$, and $\rm C^{15}N$ $N=1\to0$ towards 15 metal-poor molecular clouds in the Galactic outer disk ($R_{\rm gc} > $ 12 kpc), supplemented by data from the literature. After updating their Galactocentric distances, we find that $\rm ^{12}C/^{13}C$ and $\rm ^{14}N/^{15}N$ gradients are in good agreement with those derived using independent optically thin molecular tracers, even in regions with the lowest metallicities. We therefore recommend using optically thin tracers for Galactic and extragalactic CNO isotopic measurements, which avoids the biases associated with the traditional method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要