Interactive Proofs For Differentially Private Counting

Ari Biswas,Graham Cormode

PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023(2023)

引用 0|浏览7
暂无评分
摘要
Differential Privacy (DP) is often presented as a strong privacy-enhancing technology with broad applicability and advocated as a de facto standard for releasing aggregate statistics on sensitive data. However, in many embodiments, DP introduces a new attack surface: a malicious entity entrusted with releasing statistics could manipulate the results and use the randomness of DP as a convenient smokescreen to mask its nefariousness. Since revealing the random noise would obviate the purpose of introducing it, the miscreant may have a perfect alibi. To close this loophole, we introduce the idea of Interactive Proofs For Differential Privacy, which requires the publishing entity to output a zero knowledge proof that convinces an efficient verifier that the output is both DP and reliable. Such a definition might seem unachievable, as a verifier must validate that DP randomness was generated faithfully without learning anything about the randomness itself. We resolve this paradox by carefully mixing private and public randomness to compute verifiable DP counting queries with theoretical guarantees and show that it is also practical for real-world deployment. We also demonstrate that computational assumptions are necessary by showing a separation between information-theoretic DP and computational DP under our definition of verifiability.
更多
查看译文
关键词
differential privacy,secure multiparty computation,verifiable computation,zero knowledge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要