Discovery of small molecule c-Maf inhibitors using molecular docking-based virtual screening, molecular dynamics simulation, and biological evaluation

Zhiwei Hu,Yindi Zeng, Yaxin Zhang, Qiurong Zhang,Jinge Xu,Linlin Liu

CHEMICAL BIOLOGY & DRUG DESIGN(2024)

引用 0|浏览3
暂无评分
摘要
Multiple myeloma (MM) is a prevalent plasma cell malignancy in the blood system that remains incurable. Given the abnormally high expression of c-Maf in most MM patients, targeting c-Maf presents an attractive therapeutic approach for treating MM malignancies. In this study, we employed a combined strategy involving molecular docking-based virtual screening, molecular dynamics (MD) simulation, and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation on existing FDA-approved drugs. Six compounds were selected for further experimental assay: vemurafenib, sorafenib, sildenafil, fluvastatin, erlotinib, and glimepiride. Among these compounds, sorafenib and glimepiride exhibited significant inhibition of myeloma cell proliferation in the RPMI-8226 cell line. Moreover, both compounds simultaneously downregulated c-Maf protein expression to induce G1 phase arrest and apoptosis in myeloma cells. Collectively, sorafenib and glimepiride may be considered promising candidates for developing more potent c-Maf inhibitors in the future.
更多
查看译文
关键词
c-Maf,molecular docking-based virtual screening,molecular dynamics simulation,multiple myeloma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要