Determining the source water and active root depth of woody plants using a deuterium tracer at a Savannah site in northern Stampriet Basin, Namibia

Hydrogeology Journal(2024)

引用 0|浏览3
暂无评分
摘要
Woody plants play a significant role in the global water cycle through water uptake by roots and evapotranspiration. A deuterium tracer was used to assess the active root depths for Salvia mellifera and Boscia albitrunca in the Ebenhaezer area (western Namibia). The tracer was inserted at different soil depths in December 2016. Xylem cores were obtained using an increment borer, and transpired water was collected using transpiration bags zipped around the plants’ leaves. Groundwater was collected from boreholes. Soil samples were collected after the rainy season using a hand auger. Xylem and soil water were extracted using a cryogenic vacuum extraction method and analysed for stable water isotopes. Only one S. mellifera transpiration sample showed a high deuterium content (516‰) where the tracer was inserted at 2.5-m soil depth. Elevated deuterium contents were observed in two S. mellifera xylem samples; tracer had been applied at 2.5 and 3 m depth (yielding 35 and 31‰ deuterium, respectively), which constitutes a possible active-root depth range for S. mellifera . At the end of the study period (May 2017), the average δ 18 O value for B. albitrunca xylem samples was similar to that of groundwater. The δ 18 O value for S. mellifera was between that of soil water and groundwater, indicating that this species uses groundwater and soil water available for groundwater recharge. Determination of the active root depth and source water for these species would help improve hydrological modelling by incorporating the influence of woody plants on groundwater recharge.
更多
查看译文
关键词
Arid regions,Stable water isotopes,Deuterium tracer,Namibia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要