Harmonic

Ad Hoc Networks(2023)

Cited 0|Views18
No score
Abstract
Real-time allocation of resources to fulfill service requests from road vehicles is becoming increasingly complex, for two main reasons: the continuous increase in the number of Internet-connected vehicles on roads all over the world, and the emergence of complex and resource-greedy applications that require fast execution, often under limited availability of computational resources. While many resource allocation solutions to this problem have been proposed recently, these solutions rely on unrealistic scenarios and constraints that limit their practical use. This paper presents HARMONIC, a Game Theory-based coalition game that aims to maximize resource utilization and dynamically balance resource usage across multiple Vehicular Clouds (VCs). HARMONIC employs a Shapley value-based strategy to determine the order of task allocation to available resources. It is built upon our proposed Market Game model, specifically designed to address resource allocation challenges in dynamic VCs. We conduct a comparative analysis with existing literature solutions under various scenarios and resource constraints to evaluate HARMONIC’s performance. Our simulation results demonstrate that HARMONIC achieves resource allocation in fewer rounds and with fewer failures. Furthermore, it effectively distributes tasks to more VCs, improving load balancing and overall system efficiency.
More
Translated text
Key words
VANET,Vehicular Clouds,Resource allocation,Load-balancing,Game Theory,Shapley Value
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined