Continuous cropping disorders of eggplants (Solanum melongena L.) and tomatoes (Solanum lycopersicum L.) in suburban agriculture: Microbial structure and assembly processes

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

Cited 0|Views8
No score
Abstract
Deciphering the intricate relationships between microorganisms and plants remains a formidable challenge in plant microbial ecology, an area that holds promise for optimizing microbial interventions to enhance stress resilience and agricultural yields. In our investigation, we procured samples during 2019 and 2022 from a suburban agricultural greenhouse. Our study delineated the composition of bacterial and fungal communities across various ecological niches-namely, the rhizosphere soil, bulk soil, and phyllosphere of healthy, Ralstonia solanacearum-infected, and dead eggplants and tomatoes. The structure and composition of both fungal and bacterial communities change significantly under the influence of the host genotype across all samples. In the tomato or eggplant groups, bacterial wilt exerts a more pronounced impact on the bacterial community than on the fungal community. We speculate that the rhizosphere of healthy eggplants and tomatoes harbored more antibiotic-producing (e.g., Amycolatopsis and Penicillium) and biocontrol (e.g., Bacillus) strains, which can lead to have lower absolute abundance of R. solanacearum. In the context of R. solanacearum invasion, deterministic processes were responsible for shaping 70.67 % and 80.63 % of the bacterial community assembly in the rhizosphere of eggplants and tomatoes, respectively. Deterministic processes dominated the assembly of fungal communities in the rhizosphere of R. solanacearum-infected eggplants, whereas the opposite was true in the tomatoes. Homogeneous selection emerged as the predominant force governing the bacterial community assembly in the rhizospheres of R. solanacearum-infected eggplants and tomatoes. The bacterial co-occurrence networks in healthy rhizosphere soil were characterized by reduced vulnerability and enhanced stability (i.e., robustness index) and complexity (i.e., cohesion index), compared to their infected counterparts. In summary, complex microbial networks in rhizosphere soils are more resistant to invasion by soil-borne pathogens. The dynamics of bacterial interactions and community assembly processes are pivotal for effective microbiome management and offer predictive insights into the ecological ramifications of R. solanacearum invasions.
More
Translated text
Key words
Suburban agriculture,Ralstonia solanacearum,Community assembly,Network stability and complexity,Vulnerability,Homogeneous selection
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined