Environmental DNA biomonitoring reveals the human impacts on native and non-native fish communities in subtropical river systems

JOURNAL OF ENVIRONMENTAL MANAGEMENT(2024)

引用 0|浏览5
暂无评分
摘要
Subtropical rivers are one of the hotspots of global biodiversity, facing increased risks of fish diversity changes and species extinction. However, until now, human impacts on native and non-native fish communities in subtropical rivers still lack sufficient effort. Here, we used the environmental DNA (eDNA) approach to investigate fish communities in the Dongjiang River of southeast China, a typical subtropical river, and explored the effects of regional land use and local water pollution on fish taxonomic and functional diversity. Our data showed that 90 species or genera of native fish and 15 species or genera of non-native fish were detected by the eDNA approach, and there was over 85% overlap between eDNA datasets and historical records. The taxonomic and functional diversity of all, native and non-native fish communities showed consistent spatial patterns, that is, the upstream of the tributary was significantly higher than that of the mainstream and downstream. Land use and water pollution such as COD and TP were the determinants in shaping the spatial structure of fish communities, and water pollution explained 31.56%, 29.88%, and 27.80% of the structural variation in all, native and nonnative fish communities, respectively. The Shannon diversity and functional richness of native fish showed a significant downward trend driven by COD (pShannon = 0.0374; pfunctional = 0.0215) and land use (pShannon = 0.0159; pfunctional = 0.0441), but they did not have significant impacts on non-native fish communities. Overall, this study emphasizes the inconsistent response of native and non-native fish communities to human impacts in subtropical rivers, and managers need to develop strategies tailored to specific fish species to effectively protect water security and rivers.
更多
查看译文
关键词
eDNA,Taxonomic diversity,Functional diversity,Land use,Dongjiang River
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要