Microseismic event waveform classification using CNN-based transfer learning models

INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY(2023)

Cited 0|Views5
No score
Abstract
The efficient processing of large amounts of data collected by the microseismic monitoring system (MMS), especially the rapid identification of microseismic events in explosions and noise, is essential for mine disaster prevention. Currently, this work is primarily performed by skilled technicians, which results in severe workloads and inefficiency. In this paper, CNN-based transfer learning combined with computer vision technology was used to achieve automatic recognition and classification of multichannel microseismic signal waveforms. First, data collected by MMS was generated into 6-channel original waveforms based on events. After that, sample data sets of microseismic events, blasts, drillings, and noises were established through manual identification. These datasets were split into training sets and test sets according to a certain proportion, and transfer learning was performed on AlexNet, GoogLeNet, and ResNet50 pre-training network models, respectively. After training and tuning, optimal models were retained and compared with support vector machine classification. Results show that transfer learning models perform well on different test sets. Overall, GoogLeNet performed best, with a recognition accuracy of 99.8%. Finally, the possible effects of the number of training sets and the imbalance of different types of sample data on the accuracy and effectiveness of classification models were discussed. (c) 2023 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
More
Translated text
Key words
Mine safety,Machine learning,Transfer learning,Microseismic events,Waveform classification,Image identification and classification
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined