Palmitoylation landscapes across human cancers reveal a role of palmitoylation in tumorigenesis

Yue Kong,Yugeng Liu, Xianzhe Li, Menglan Rao, Dawei Li,Xiaolan Ruan,Shanglin Li,Zhenyou Jiang,Qiang Zhang

Journal of Translational Medicine(2023)

引用 0|浏览4
暂无评分
摘要
Background Protein palmitoylation, which is catalyzed by palmitoyl-transferase and de-palmitoyl-transferase, plays a crucial role in various biological processes. However, the landscape and dynamics of protein palmitoylation in human cancers are not well understood. Methods We utilized 23 palmitoyl-acyltransferases and seven de-palmitoyl-acyltransferases as palmitoylation-related genes for protein palmitoylation analysis. Multiple publicly available datasets were employed to conduct pan-cancer analysis, examining the transcriptome, genomic alterations, clinical outcomes, and correlation with c-Myc (Myc) for palmitoylation-related genes. Real-time quantitative PCR and immunoblotting were performed to assess the expression of palmitoylation-related genes and global protein palmitoylation levels in cancer cells treated with Myc depletion or small molecule inhibitors. Protein docking and drug sensitivity analyses were employed to predict small molecules that target palmitoylation-related genes. Results We identified associations between palmitoylation and cancer subtype, stage, and patient survival. We discovered that abnormal DNA methylation and oncogenic Myc-driven transcriptional regulation synergistically contribute to the dysregulation of palmitoylation-related genes. This dysregulation of palmitoylation was closely correlated with immune infiltration in the tumor microenvironment and the response to immunotherapy. Importantly, dysregulated palmitoylation was found to modulate canonical cancer-related pathways, thus influencing tumorigenesis. To support our findings, we performed a proof-of-concept experiment showing that depletion of Myc led to reduced expression of most palmitoylation-related genes, resulting in decreased global protein palmitoylation levels. Through mass spectrometry and enrichment analyses, we also identified palmitoyl-acyltransferases ZDHHC7 and ZDHHC23 as significant contributors to mTOR signaling, DNA repair, and immune pathways, highlighting their potential roles in tumorigenesis. Additionally, our study explored the potential of three small molecular (BI-2531, etoposide, and piperlongumine) to modulate palmitoylation by targeting the expression or activity of palmitoylation-related genes or enzymes. Conclusions Overall, our findings underscore the critical role of dysregulated palmitoylation in tumorigenesis and the response to immunotherapy, mediated through classical cancer-related pathways and immune cell infiltration. Additionally, we propose that the aforementioned three small molecule hold promise as potential therapeutics for modulating palmitoylation, thereby offering novel avenues for cancer therapy.
更多
查看译文
关键词
Palmitoylation,Cancer,DNA methylation,c-Myc,Immunotherapy,Small molecular
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要