Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览5
暂无评分
摘要
Antibody-antigen complex modelling is an important step in computational workflows for therapeutic antibody design. While experimentally determined structures of both antibody and the cognate antigen are often not available, recent advances in machine learning-driven protein modelling have enabled accurate prediction of both antibody and antigen structures. Here, we analyse the ability of protein-protein docking tools to use machine learning generated input structures for information-driven docking. We find that HADDOCK can generate accurate models of antibodyantigen complexes using an ensemble of antibody structures generated by machine learning tools and AlphaFold2 predicted antigen structures. Targeted docking using knowledge of the complementary determining regions on the antibody and some information about the targeted epitope allows the generation of high quality models of the complex with reduced sampling, resulting in a computationally cheap protocol that outperforms the ZDOCK baseline. The data set used to benchmark the docking protocols in this study is available at github.com/haddocking/ai-antibodies. The docking models will be deposited at data.sbgrid.org/labs/32/ upon acceptance. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要