Learning Hyperplanes for Multi-Agent Collision Avoidance in Space.

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
A core challenge of multi-robot interactions is collision avoidance among robots with potentially conflicting objectives. We propose a game-theoretic method for collision avoidance based on rotating hyperplane constraints. These constraints ensure collision avoidance by defining separating hyperplanes that rotate around a keep-out zone centered on certain robots. Since it is challenging to select the parameters that define a hyperplane without introducing infeasibilities, we propose to learn them from an expert trajectory i.e., one collected by recording human operators. To do so, we solve for the parameters whose corresponding equilibrium trajectory best matches the expert trajectory. We validate our method by learning hyperplane parameters from noisy expert trajectories and demonstrate the generalizability of the learned parameters to scenarios with more robots and previously unseen initial conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要