A Meta Logarithmic-Sobolev Inequality for Phase-Covariant Gaussian Channels

arXiv (Cornell University)(2023)

Cited 0|Views3
No score
Abstract
We introduce a meta logarithmic-Sobolev (log-Sobolev) inequality for the Lindbladian of all single-mode phase-covariant Gaussian channels of bosonic quantum systems, and prove that this inequality is saturated by thermal states. We show that our inequality provides a general framework to derive information theoretic results regarding phase-covariant Gaussian channels. Specifically, by using the optimality of thermal states, we explicitly compute the optimal constant $\alpha_p$, for $1\leq p\leq 2$, of the $p$-log-Sobolev inequality associated to the quantum Ornstein-Uhlenbeck semigroup. These constants were previously known for $p=1$ only. Our meta log-Sobolev inequality also enables us to provide an alternative proof for the constrained minimum output entropy conjecture in the single-mode case. Specifically, we show that for any single-mode phase-covariant Gaussian channel $\Phi$, the minimum of the von Neumann entropy $S\big(\Phi(\rho)\big)$ over all single-mode states $\rho$ with a given lower bound on $S(\rho)$, is achieved at a thermal state.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined