Gauging spacetime inversions in quantum gravity

arXiv (Cornell University)(2023)

引用 0|浏览3
暂无评分
摘要
Spacetime inversion symmetries such as parity and time reversal play a central role in physics, but they are usually treated as global symmetries. In quantum gravity there are no global symmetries, so any spacetime inversion symmetries must be gauge symmetries. In particular this includes $\mathcal{CRT}$ symmetry (in even dimensions usually combined with a rotation to become $\mathcal{CPT}$), which in quantum field theory is always a symmetry and seems likely to be a symmetry of quantum gravity as well. In this article we discuss what it means to gauge a spacetime inversion symmetry, and we explain some of the more unusual consequences of doing this. In particular we argue that the gauging of $\mathcal{CRT}$ is automatically implemented by the sum over topologies in the Euclidean gravity path integral, that in a closed universe the Hilbert space of quantum gravity must be a real vector space, and that in Lorentzian signature manifolds which are not time-orientable must be included as valid configurations of the theory. In particular we give an example of an asymptotically-AdS time-unorientable geometry which must be included to reproduce computable results in the dual CFT.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要