Spin-phonon interactions on the kagome lattice: Dirac spin liquid versus valence-bond solids

arxiv(2023)

引用 0|浏览1
暂无评分
摘要
We investigate the impact of the spin-phonon coupling on the S=1/2 Heisenberg model on the kagome lattice. For the pure spin model, there is increasing evidence that the low-energy properties can be correctly described by a Dirac spin liquid, in which spinons with a conical dispersion are coupled to emergent gauge fields. Within this scenario, the ground-state wave function is well approximated by a Gutzwiller-projected fermionic state [Y. Ran, M. Hermele, P.A. Lee, and X.-G. Wen, Phys. Rev. Lett. 98, 117205 (2007)]. However, the existence of U(1) gauge fields may naturally lead to instabilities when small perturbations are included. Since phonons are ubiquitous in real materials, they may play a relevant role in the determination of the actual physical properties of the kagome antiferromagnet. We perform a step forward in this direction, including phonon degrees of freedom (at the quantum level) and applying a variational approach based upon Gutzwiller-projected fermionic Ansätze. Our results suggest that the Dirac spin liquid is stable for small spin-phonon couplings, while valence-bond solids are obtained at large couplings. Even though different distortions can be induced by the spin-phonon interaction, the general aspect is that the energy is lowered by maximizing the density of perfect hexagons in the dimerization pattern.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要