Spiking NeRF: Representing the Real-World Geometry by a Discontinuous Representation

AAAI 2024(2024)

引用 0|浏览7
暂无评分
摘要
A crucial reason for the success of existing NeRF-based methods is to build a neural density field for the geometry representation via multiple perceptron layers (MLPs). MLPs are continuous functions, however, real geometry or density field is frequently discontinuous at the interface between the air and the surface. Such a contrary brings the problem of unfaithful geometry representation. To this end, this paper proposes spiking NeRF, which leverages spiking neurons and a hybrid Artificial Neural Network (ANN)-Spiking Neural Network (SNN) framework to build a discontinuous density field for faithful geometry representation. Specifically, we first demonstrate the reason why continuous density fields will bring inaccuracy. Then, we propose to use the spiking neurons to build a discontinuous density field. We conduct a comprehensive analysis for the problem of existing spiking neuron models and then provide the numerical relationship between the parameter of the spiking neuron and the theoretical accuracy of geometry. Based on this, we propose a bounded spiking neuron to build the discontinuous density field. Our method achieves SOTA performance. The source code and the supplementary material are available at https://github.com/liaozhanfeng/Spiking-NeRF.
更多
查看译文
关键词
ML: Bio-inspired Learning,CV: 3D Computer Vision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要